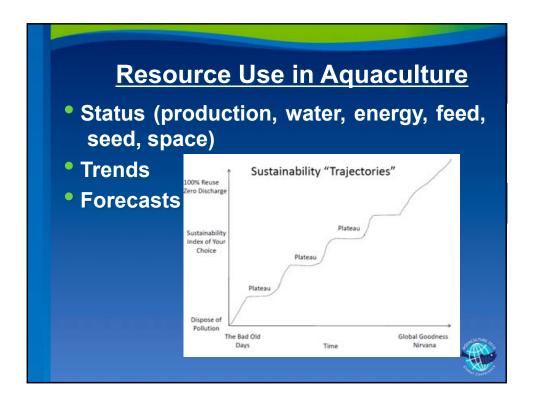


Global Conference on Aquaculture 2010 Farming the waters for People and Food 22-25 September 2010, Phuket, Thailand

Disclaimer


This is an unedited presentation given at the Global Conference on Aquaculture 2010. The Organising Committee do not guarantee the accuracy or authenticity of the contents.

Citations

Please use the following citation sequence with citing this document:

- 1. Author.
- 2. Title.
- 3. Presented at the Global Conference on Aquaculture 22-25 September 2010, Phuket, Thailand.

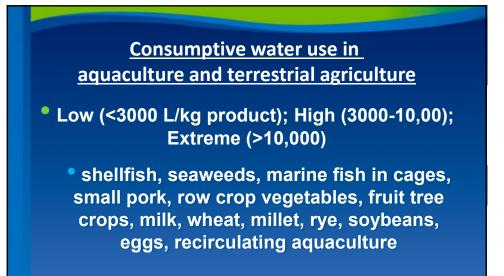
Production (FAO, 2009)

China accounted for 67% of global production (2006)

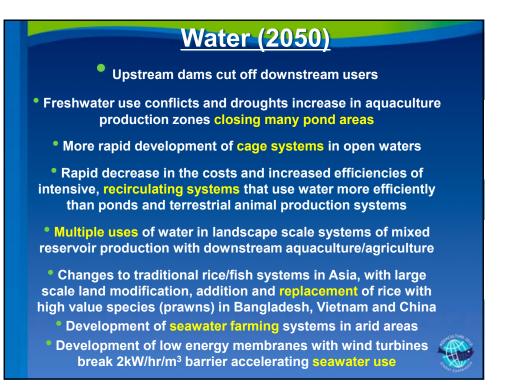
34.4 million metric tons/51.7 MMT

Rest of the world, production was 17.2 MMT Outside of China, aquaculture provided 23% of world fisheries production, not 47%

Most global aquaculture production remains for all the controversies—freshwater fish (54%) and mollusks (27%)

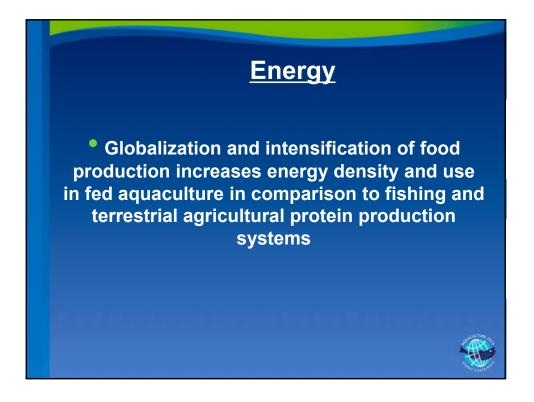

Food Systems	FCRs (kg dry feed/kg wet weight gain +/- SD)	% Edible	Production Efficiencies (kg dry feed/kg of edible wet mass)
Tilapia	1.5 (0.2)	60	2.5
Catfish	1.5 (0.2)	60	2.5
Marine Shrimp	1.5 (0.5)	56	2.7
Freshwater Prawns	2.0 (0.2)	45	4.4
Milk	3.0 (0.0)	100	3.0
Eggs	2.8 (0.2)	90	3.1
Broiler Chickens (Verdegem et al., 2006)	2.0 (0.2)	59	3.1
Swine	2.5 (0.5)	45	5.6
Rabbits	3.0 (0.5)	47	6.4
Beef	5.9 (0.5)	49	10.2
Lamb	4.0 (0.5)	23	17.4

Water


 High water use in ponds in comparison to terrestrial agricultural protein production systems

 Severe water competition growing with alternative users

• Massive damming and urbanization in Asia diverting water to coastal cities and agriculture



Shrimp, olive oil, trout, butter, beef, sheep, Pangasius catfish

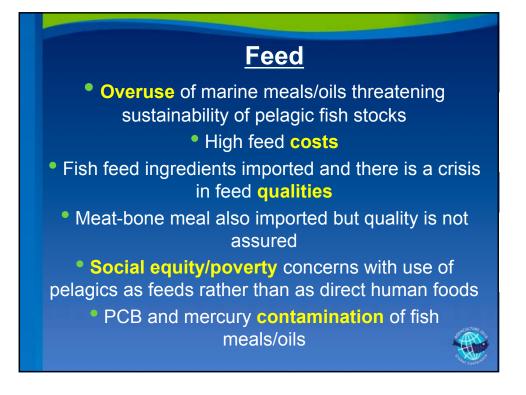
need 1990's RO plants 5-'	in the protion labor trigity	
1990's RO plants 5-'	in theoretical electricity	0.86
-	ed	
	90's RO plants	5-7
$(250,000 \text{ m}^3/\text{day})$ 3.8	50,000 m ³ /day)	3.85
R&D (Affordable 1.	&D (Affordable	1.5
Desalination Collaboration	esalination Collaboration	

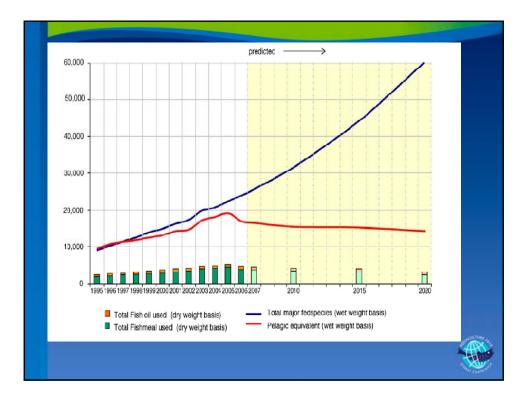
Fossil Fuel Consumption in Aquaculture and Terrestrial Agriculture

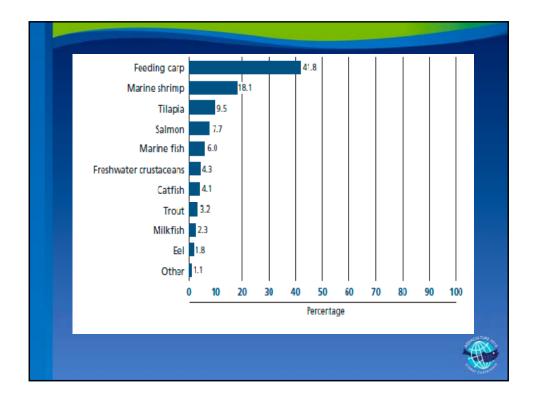
 Low (<20 kcal/kcal protein); High (20-50); Extreme (>50)

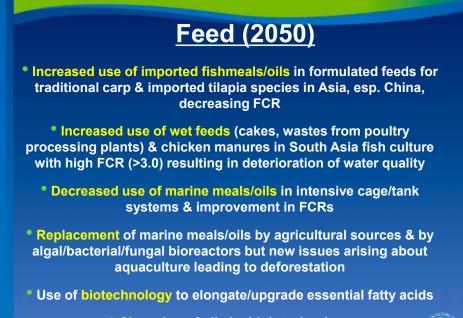
 shellfish, seaweeds, rangeland beef, traditional carp & tilapia ponds, sheep, row crop vegetables, dairy

 flatfish fisheries, seabass cages, feedlot beef, shrimp & lobster capture fisheries


Food Systems	Production (MT/ha)	MJ/MT
Sugar Beets	57.9	550
Potatoes	47.0	940
Soybeans	2.5	2,950
Wheat	8.2	3,100
Salmon Net Pen Water- Based	1,000	26,900
Salmon Bag System Water- Based	1,733	37,300
Salmon Flow-through Land-Based	2,138	132,000
Salmon Recirculating Land-Based	2,406	233,000


Energy (2050)


Recirculating systems are energy intensive compared to other systems and have large carbon footprint

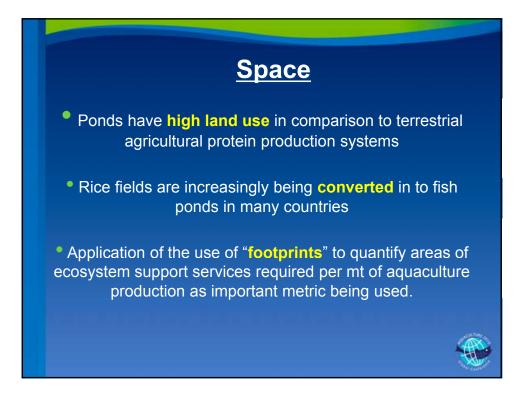

 Life Cycle Assessments show advantages/disadvantages of aquaculture

 Large scale development and use of costeffective renewable energy systems make intensive recirculating systems more widespread and accessible

* Cleansing of oils by high technology

Subsidized aquaculture	FIFO	FIFO
	(1995)	(2008)
Salmon	7.5	4.9
Trout	6.0	3.4
Eels	5.2	3.5
Misc. Marine Fish	3.0	2.2
Shrimp	1.9	1.4
Net production aquaculture		
Chinese carps		0.2
Milkfish		0.2
Tilapia		0.4
American catfish		0.5
Freshwater prawns		0.6

Alternative Meals/Oils	Notable Research & Developments
Soybean Meals	Shrimp in semi-intensive culture in ponds could be grown on <i>defattened soybean</i> <i>meal as their sole protein source</i>
nsect Meals	Meals made from mass-producing insects in culture; Indonesia constructing 4,000 maggot farms for fish feeds using palm oil byproducts
Bacterial Protein Meals (BPM)	BPM investigated as protein sources in salmon, rainbow trout, halibut feeds with comparable results for growth, feed intake and utilisation up to 36% incorporation for salmon and trout.
Vegetable oils and Animal fats	~75% of dietary fish oil can be substituted with alternative lipid sources without significantly affecting growth performance, feed efficiency and intake for almost all finfish species studied
Rendered animal proteins	Dietary inclusion of animal protein meals have contributed to decreasing fish meal levels in feeds for top consumer species as salmonids and shrimp



Seed (2050)

• Rapid expansion of export-oriented international seed trade esp. of high-value species

 Increasing need to introduce quality assurance measures beyond simple official zoosanitary certificates

 Regional hatchery infrastructure taking shape in many nations

System types	Descriptions	Production (kg/ha/year)	Efficiency of Land Use (m ² /MT)
Extensive	On-farm resources	100-500	20,000-100,000
Extensive	On-farm resources, fertilizers	100-1000	10,000-100,000
Semi-intensive	Supplemental feeds, static	2000-8000	1,250-5,000
Semi-intensive	Supplemental feeds, water exchanges	4000-20,000	500-2,500
Semi-intensive	Supplemental feeds, water exchanges, night aeration	15,000-35,000	300-700
Intensive	Complete feeds, water exchanges, night aeration	20,000-50,000	200-500
Intensive	Complete feeds, water exchanges, constant aeration	20,000-100,000	100-500

Salmon Species, Systems	Area Use (ha/MT)
Farmed Chinook	16.0
Farmed Atlantic	12.7
Fished Chinook	11.0
Fished Coho	10.2
Fished Sockeye	5.7
Fished Chum	5.2
Fished Pink	5.0

Space (2050)

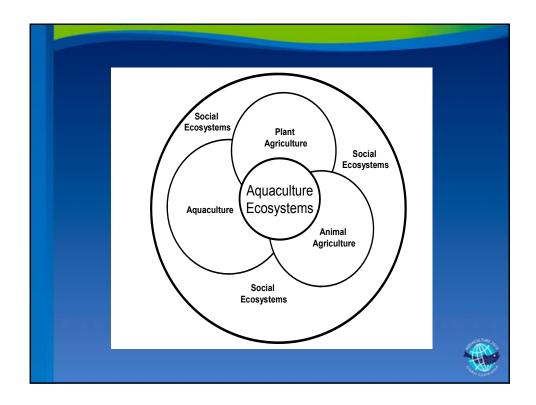
Ponds taken over by urbanization

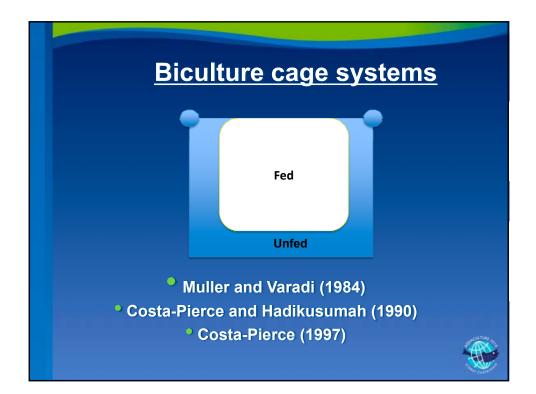
• Cage systems proliferating with user conflicts driving development/use of submerged systems. Widespread use of cages in small water bodies, reservoirs and coastal open waters

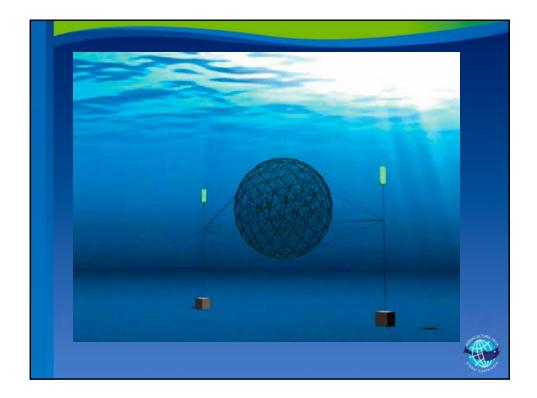
 Intensive, recirculating systems are more efficient uses of land & will remain uneconomic in most areas in comparison to other production systems UNLESS RENEWABLES USED

• More widespread use of integrated aquaculture into landscapescale systems of mixed aquaculture/land uses

 Greater use of land/water use planning to address growing land/water user conflicts

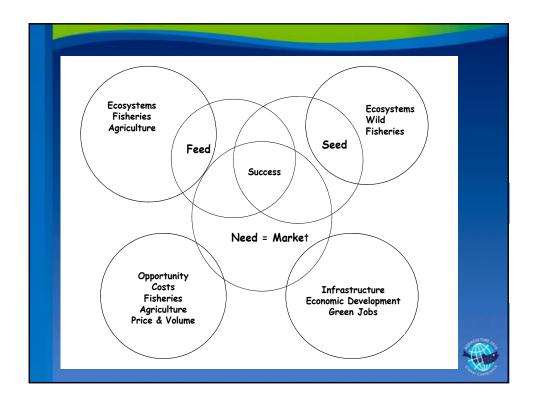

Conclusions


 move to the ocean, lakes and reservoirs
 use of renewable energy, recirculating develops rapidly


• multiple uses of water landscape scale

 tighter integration with agricultural and fisheries/marine resources

• new professionalism



 Ecosystem approaches to aquaculture = market forces

- Sustainable sources of supply
 = aquaculture and fisheries
 - Transdisciplinary integration
 = education & training

