

Global Conference on Aquaculture 2010 Farming the waters for People and Food 22-25 September 2010, Phuket, Thailand

Disclaimer

This is an unedited presentation given at the Global Conference on Aquaculture 2010. The Organising Committee do not guarantee the accuracy or authenticity of the contents.

Citations

Please use the following citation sequence with citing this document:

- 1. Author.
- 2. Title.
- 3. Presented at the Global Conference on Aquaculture 22-25 September 2010, Phuket, Thailand.

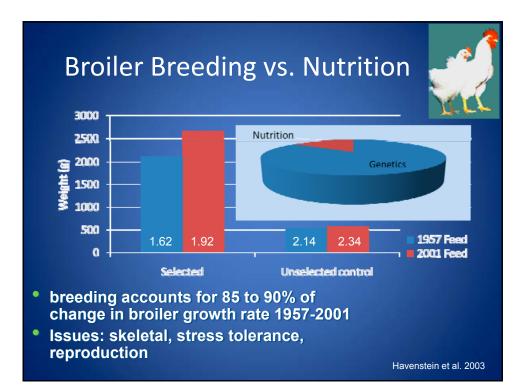
Contributing Authors:

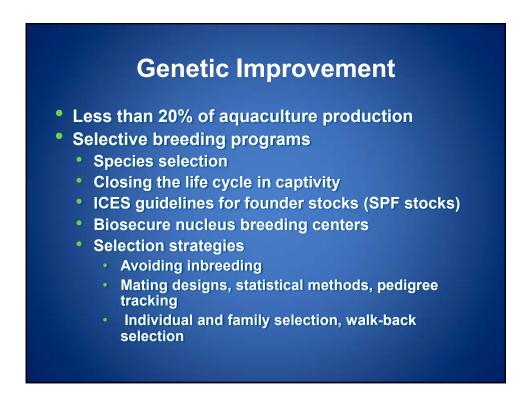
Dr Gideon Hulata, Dr Zhanjiang Liu, Dr Geoff L. Allan, Dr Christina Sommerville, Dr Thales Passos de Andrade, Dr Rui Pereira, Dr Charles Yarish, Dr Muki Shpigel, Dr Thierry Chopin, Dr Shawn Robinson, Dr Yoram Avnimelech

FAO Expert: Mr Alessandro Lovatelli

Sustainable aquaculture's challenges

- Feeding people
- Socioeconomic development
- Environmental responsibility
- Profitability


Can we have our cake and eat it too? Are there opportunities for "win/win" solutions?


Necessity is the mother of invention. Plato

Innovation distinguishes between a leader and a follower.

Steve Jobs

Selective breeding programs

- Atlantic cod (Gadus morhua)
- Atlantic salmon (*Salmo salar*)
- Common carp (Cyprinus carpio)
- Gilthead seabream (Sparus aurata)
- Hybrid striped bass (Morone chrysops × M. saxatilis)
- Lake Malawi tilapia (Oreochromis
- shiranus)
- Mediterranean sea bass (Dicentrarchus labrax L.)
- Nile tilapia (O. niloticus)
- Red sea bream (*Pagrus major*)
- Rohu carp (Labeo rohita)
- White shrimp (*Litopenaeus vannamei*)
- Tiger shrimp (Penaeus monodon)
- Pacific oyster (Crassostrea gigas)
- Sydney rock oyster Saccostrea glomerata
- Green-lipped mussel Perna canaliculus

Hulata 2009 New Technologies

Selective breeding programs

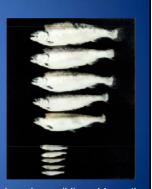
- Atlantic cod (*Gadus morhua*)
- Atlantic salmon (*Salmo salar*)
- Common carp (*Cyprinus carpio*)
- Gilthead seabream (Sparus aurata)
- Hybrid striped bass (*Morone chrysops × M. saxatilis*)
- Lake Malawi tilapia (Oreochromis shiranus)
- Mediterranean sea bass (Dicentrarchus labrax)
- Nile tilapia (*O. niloticus*)
- Red sea bream (Pagrus major)
- Rohu carp (*Labeo rohita*)
- White shrimp (*Litopenaeus vannamei*)
- Tiger shrimp (Penaeus monodon)
- Pacific oyster (Crassostrea gigas)
- Sydney rock oyster Saccostrea glomerata
- Green-lipped mussel Perna canaliculus

Production-related traits

Growth

- Age at maturity; Rainbow trout
- Eliminating vertebral deformity; Atlantic salmon, Atlantic cod
 - Feed efficiency: Atlantic salmo
 - Reproductive traits: Coho salm
 - Stress, disease and parasite resistance; Rainbow trout, Atlantic salmon, White shrimn, Sydney rock ovster

Consumer-related traits

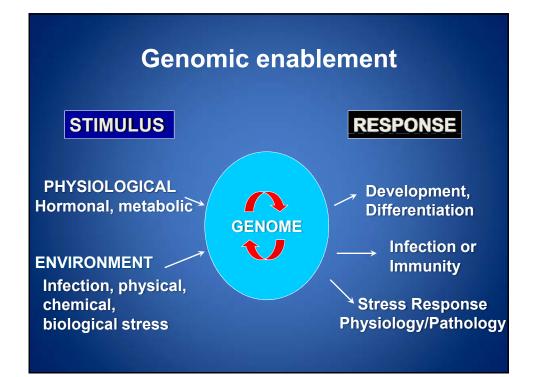

- Appearance; Rainbow trout
- Body composition; Rainbow trout
- Carcass quality, yield; Coho salmon, pacific oyster

Hulata 2009 New Technologies

Transgenics

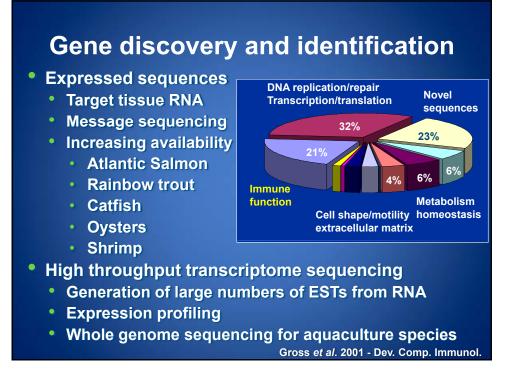
Gene transfer technologies

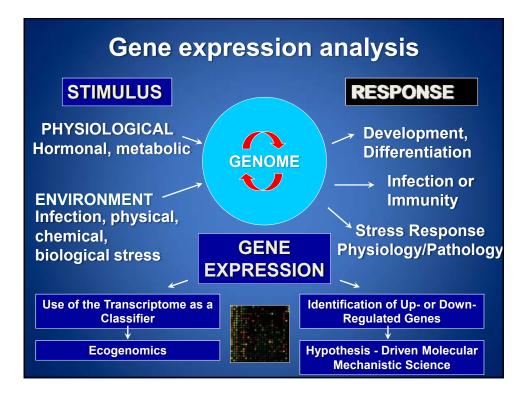
- Microinjection, electroporation, retroviral vectors, particle gun bombardment, sperm and testis-mediated methods, embryonic stem cells
- Control over integration and expression
- Traits
 - Growth (salmonids, mud loach)
 - Disease resistance (catfish, grass carp)
 - Cold tolerance (salmon)


coho salmon siblings 14 months © Copyright 2002 Nature Publishing Group

Genetically modified organisms

- Issues and risks
 - Environmental
 - Biodiversity and natural ecosystems
 - Food safety
 - Regulatory
 - Animal welfare


Risks must be honestly and accurately analyzed and understood by society for potential benefits to be realized

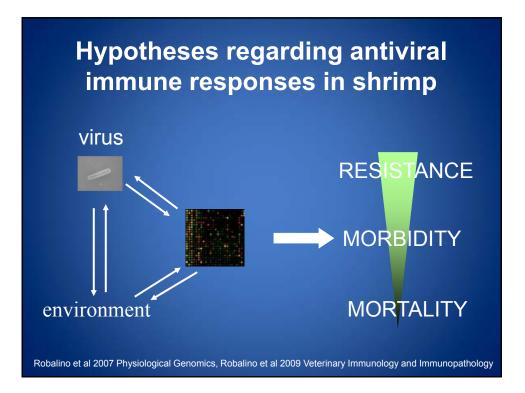

Kapuscinski, A.R., K.R. Hayes, S. Li, G. Dana, E.M. Hallerman and P. Schei 2007. Environmental Risk Assessment of Genetically Modified Organisms. Volume 3 Methodologies for Transgenic Fish, Oxford CABI.

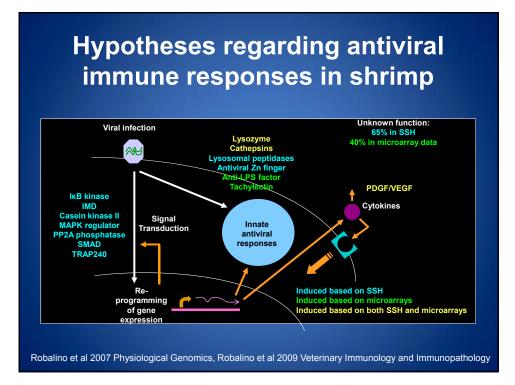
Genomic enablement

- Gene Discovery
- Expression analysis
- Marker assisted selection

10/10/2010

Microarray development


Salmonids


- 3500; Rise et al., 2004a
- 16000; von Schalburg et al., 2005
- 9000; Bonnet et al., 2007
- 32000; Koop, in progress
- 22000; Koop, in progress
- 950; Taggart et al., 2008
- Catfish
 - 660; Ju et al., 2002
 - 19000; Li et al., 2006
 - 28000; Peatman *et al.*, 2007, 2008; Liu *et al.*, 2008
- Oysters
- 5000; Jenny et al., 2007 Carp
- r 13400; Gracey e*t al.*, 2004 13000–26000; Williams e*t al.*, 2008
- Atlantic halibut
- 9277; Douglas et al., 2008
- European flounder
 - 3336; Diab et al., 2008

- Rainbow trout • 37000; Salem et al., 2008
- 21500; Olohan et al., 2008
- Three-spined stickleback
- 9692; Geoghegan et al., 2008 Fathead minnow
 - 15 000; Klaper et al., 2008
 - 4105; Kane et al., 2008 2000; Villeneuve et al., 2008
- Goby 12661; Gracey, 2008
- Largemouth bass 15950; Garcia-Reyero et al., 2008
 - Sea bream
- 10000; Sarropoulou et al., 2005 Shrimp
 - 3853; de la Vega et al., 2008;
 2469; Robalino et al., 2007
 - 3136; Wang et al., 2006

Liu 2009 New Technologies

Hypotheses regarding antiviral immune responses in shrimp virus RESISTANCE MORBIDITY MORTALITY environment Robalino et al 2007 Physiological Genomics, Robalino et al 2009 Veterinary Immunology and Immunopathology

Genomic enablement

Marker technologies

- Allozyme markers, mitochondrial markers
- Restriction Fragment Length Polymorphism (RFLP)
- Amplified Fragment Length Polymorphism (AFLP)
- Microsatellites
- Single Nucleotide Polymorphisms (SNP)
- Uses in aquaculture
 - Analysis of population structure, diversity
 - Stock, strain, hybrid parentage identification
 - Genetic linkage analysis

Genome mapping

Gene Linkage Mapping

- Rainbow trout: 1359, 1439
 Brown trout: 302
 Atlantic salmon: 527, 64
 Arctic charr: 327
 Tiger shrimp: 673
 Kuruma prawn: 246, 401
 White shrimp: 394
 Chinese shrimp: 231-241
- Common carp: 272

- Yellow croaker: 375
- Gilthead sea bream: 204
- Atlantic halibut: 350

- Chinese shrimp: 231-241
- Common carp: 272
 Tilapia: 174, 292, 552
 Channel catfish: 293, 506
 Walking catfish: 146
 Yellow croaker: 375
 Channel catfish: 375
 Channel catfish: 46
 <li
 - Pacific abalone 384
 - Sea urchin: 324-339

Liu 2009 New Technologies

Physical mapping (BAC)

- Atlantic salmon, tilapia, channel catfish, rainbow trout
- Enabling full genome sequencing

KP-B*1 female KP-B*2 male KP-B*4 female KP-BA male KP-BA male	KP-A male NMT male	•	with dom resi lym Hon with male Hete	l com	le lo e to /stis ous mer	ect fo ect fo dise fema cial s s prog	r ase ile bred train geny
LD-R+ population				ase	ICIU	ence	01
	Population	B-fav	dise tic inform orable all	ase		No. fish tested ^a	
population	Population	B-fav	dise tic inform orable all 9-8TUF (ase		No. fish	No. fish with LD
population	Population	B-fav (Poli. Paren	dise tic inform orable all 9-8TUF (ease nation of lele on LG15)		No. fish	No. fish with LD
population	Population	B-fav (Poli. Paren	dise tic inform orable all 9-8TUF of ts	ease nation of lele on LG15)		No. fish tested ^a 26,250	No. fish with LD (incidence) 0* (0%)
population		B-fav (Poli. Paren	dise tic inform orable all 9-8TUF of ts	ease nation of lele on LG15)	Farm	No. fish tested ^a	No. fish with LD (incidence)

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Aquatic animal health

Diagnostic technologies

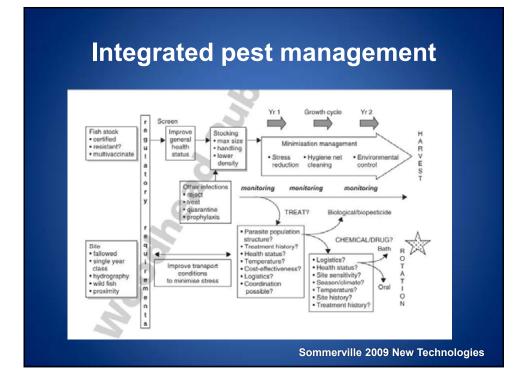
- Molecular and serological diagnostics
- Cost, speed, sensitivity and specificity
- Loop-mediated isothermal amplification (LAMP)
 edwardsiellosis, enteric septicemia of catfish, nocardiosis, PKD, IHNV, WSSV, IMNV
- Multiplex tests: Luminex bead based, microarray
- Nanotechnology
 - antibody coated magnetic particles

Pathogen host interactions

- Pathogen biology
- Host defenses
 - Shrimp and bivalve immunology
 - Immunomodulatory interrelationships
- Epidemiology and spread

Disease control

- Regulatory issues, translocation of stocks, quarantine
- Site selection and permitting
- Systems design and management
- Fallowing, single year class stocking
- Nutrition, pre and probiotics, immunostimulants, oxidative balance
- SPR stocks
 - Selected
 - Transgenic
- Biopesticides, biological control
- New Vaccines and theraputants


Vaccines					
	Salmonid heptavalent vaccines				
	 Listonella (Vibrio) anguillarum serotypes O1 and O2, V. salmonicida, Moritella viscosa, Aeromonas salmonicida, the causative agents of vibriosis, Hitra disease, winter ulcer disease, furunculosis and infectious pancreatic necrosis virus (IPNV) 				
	Live attenuated bacterial vaccines				
	 Edwardsiella ictaluri and Flavobacterium columnarae, Channel catfish and one viral vaccine (KHV for Carp in Israel) 				
•	Commercial vaccines from inactivated bacterial pathogens, fewer viral vaccines, none against parasites.				
	New vaccine development				
	 recombinant expressed viral protein - IPNV vaccine 				
	 DNA vaccine - sequences encoding for rhabdovirus glycoproteins 				
	 Bactriophage delivery systems Protected oral vaccines - delivery systems 				

Disease control

Chemotheraputants

- Prophylactic and improper antibiotic use being reduced, increasing regulation
- Regulatory and safety issues
 - Efficacy in treating the disease
 - Animal safety tolerance, welfare
 - Food safety issues for the consumer
 Maximum residual levels, withdrawal period
 - Quality
 - Environmental issues ecotoxicology

 Bath treatments; oral; slow release implants
- Development and registration cost vs. market size
- Pathogen resistance need multiple treatment options
- New technologies, gene silencing

Feed production - fish meal and fish oil use

- Aquaculture will need to produce an additional 29 million tons of food fish per year to maintain current consumption rates by the year 2030
- Aquaculture 4% of global animal feed
 - 20.2 to 22.7 million tones
- Uses 68.2% total reported fish meal production

Simple Facts:

- 1) Supply is limited
- 2) Use is increasing
- 3) Prices are going up
- 4) Toxin levels a concern

Feeds and feeding

Alternative Plant based protein sources

- Soybean products
- Corn products
- Wheat and barley
- Canola/rapeseed products
- Distillers products
- Peas and lupins

Problems

- Antinutrients
 - Trypsin inhibitor
 - Phytic acid
 - Saponins
 - Iectins
- Non-digestible compounds
 - Non soluble
 - carbohydrates
 - Resistant starch
 - Fiber
 - Palatability
 - Essential AA, HUFA

Improving use of alternative ingredients

- Nutrient availabilities and specific requirements
- Plant breeding to reduce non digestible carbohydrates
- Use of protein concentrates
- Use of microbial enzymes such as phytase
- Use of supplementary amino acids
- Protein recovery prior to fermentation to improve DDGS
- Pallatants and attractants

Improving use of alternative ingredients

- Microbial proteins
 - Algal meals
 - Yeast
 - Bacteria
- Rendered products
 - Bovine, ovine and porcine meals
 - Blood meals
 - Poultry meals
- Seafood processing waste
- Sustainable use of plankton and krill

Improving use of alternative ingredients

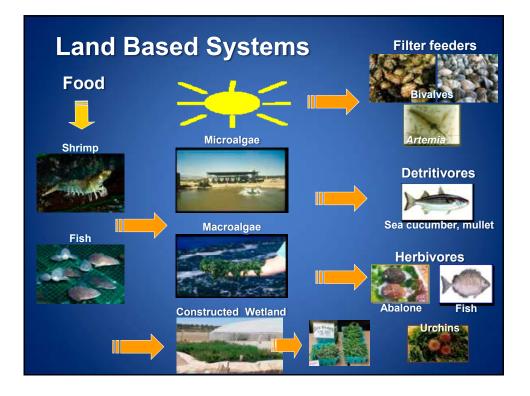
- Oils
 - Blending fish and plant oils to meet energy requirements
 - EPA and DHA
 - Use of high quality fish oils
 - GM oil seeds
 - Microbial fermentation sources
 - Plankton
 - Finishing feeds

Focusing production systems technology development

Build consensus on goals

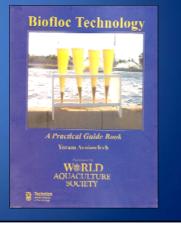
- Productivity, financial sustainability
- Environmental responsibility, climate change effects, resource utilization efficiencies
- Community socioeconomics, food security
- Develop quantitative criteria and metrics
 - Heritability and genetic gain
 - Fish in:Fish out, nutrient conversion efficiencies
 - Energy and carbon efficiencies
 - Income and food generation per unit area/input
- Evaluate progress, outcomes and impacts

Traditional Aquaculture Systems

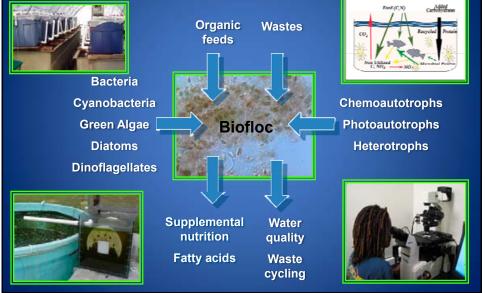

Traditional small scale Asian aquaculture systems

- Local seed production potentially improved stocks
- Regional and local health screening and management
- Improved fertilization, water quality management
- Formulated feeds
 - Improved local ingredients, use of natural inputs
 - Improved productivity using waste cycling principles
- Sector organization to facilitate technology application
 - Cooperatives
 - Medium scale entrepreneurs
 - Technology application throughout value chain

Integrated Multi-trophic Aquaculture


- Ecologically based from traditional approaches
- Nutrient waste from fed species for grazers, filter feeding species and primary producers
- Engineering use of additional trophic levels
 - Land based systems or cage culture systems
 - Efficiency and sustainability
 - Crop diversification, added value
 - Improved nutrient uptake
 - Improved social perceptions, marketing
- System profitability rather than single species

10/10/2010


Biofloc technology

- Pond based production of shrimp, tilapia
- No water exchange
- Oxygenation, mixing
- In situ biofiltration
- Waste mineralization
- Microbial protein
- Exclusion of pathogens
- Reduced cost
- Improved sustainability

10/10/2010

Experiments are underway to explore the role of natural productivity in improved ecologically based holistic approaches

Information and Communications Technology

- Monitoring, control and automation
 - Risk management catastrophic loss prevention
 - Water quality control
 - Feeding efficiency
- Improved sensors
- Networking
- Improved efficiencies
- Remote access
- Business, enterprise planning and management
- Quality and traceability
- Internet
 - Marketing, sales
 - Public relations
 - Remote management
- Research collaborations
- Access to information
- Education and extension

Conclusions

- Pace of technology development is increasing
- Advances in genetics, health, nutrition, production systems engineering and information technology have had profound effects on aquaculture production
- Innovation in sustainability and productivity have, in many cases, been implemented for and by large scale industrial aquaculture production systems
- Many examples of win/win improvements in sustainability and profitability

Conclusions

- Build consensus on goals and measurement indices to focus and measure progress and outputs of investments in technology development
- Increase development of technologies applicable to small and medium scale systems
- Extend availability of existing know-how and technologies
- Disseminate through cooperatives and investment in medium scale entrepreneurs and the value chain to support them

If you open up the mind, the opportunity to address both profits and social conditions are limitless. It's a process of innovation. Jerry Greenfield

