

Global Conference on Aquaculture 2010 Farming the waters for People and Food 22-25 September 2010, Phuket, Thailand

Disclaimer

This is an unedited presentation given at the Global Conference on Aquaculture 2010. The Organising Committee do not guarantee the accuracy or authenticity of the contents.

Citations

Please use the following citation sequence with citing this document:

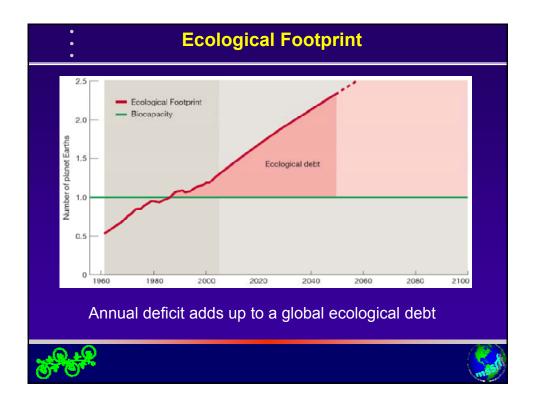
- 1. Author.
- 2. Title.
- 3. Presented at the Global Conference on Aquaculture 22-25 September 2010, Phuket, Thailand.

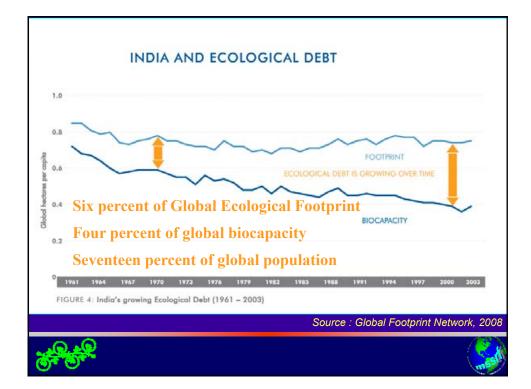
Global Conference on Aquaculture 2010

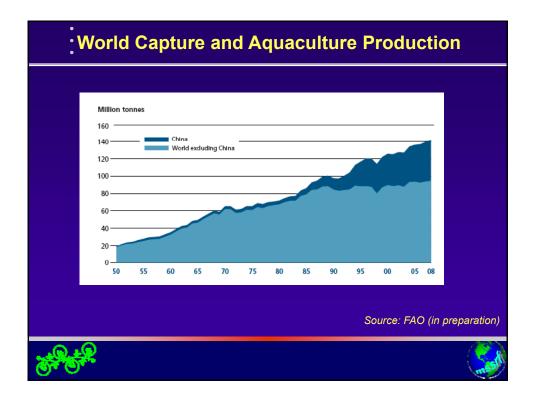
Opening Keynote Address Aquaculture and Sustainable Nutrition Security in a Warming Planet

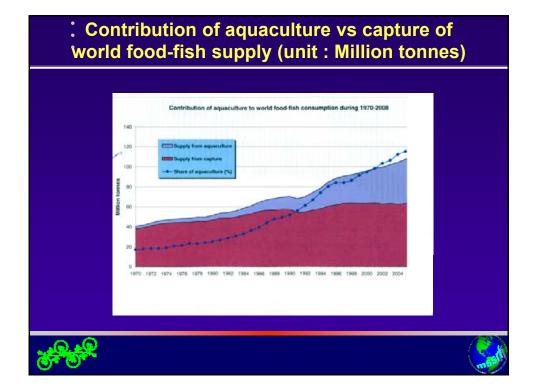
Ву

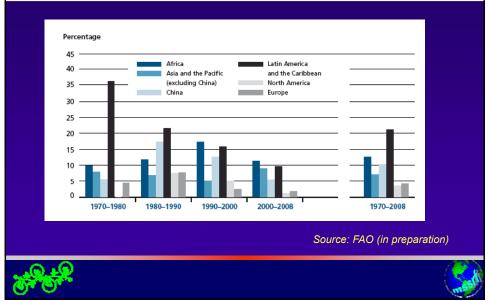
Professor M.S. Swaminathan UNESCO Chair in Ecotechnology Chairman, M S Swaminathan Research Foundation 22–25 September 2010, Phuket, Thailand

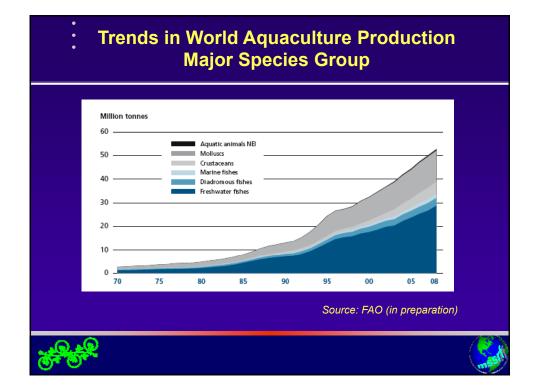


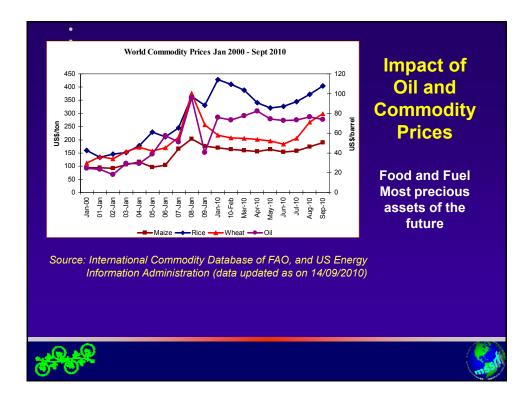








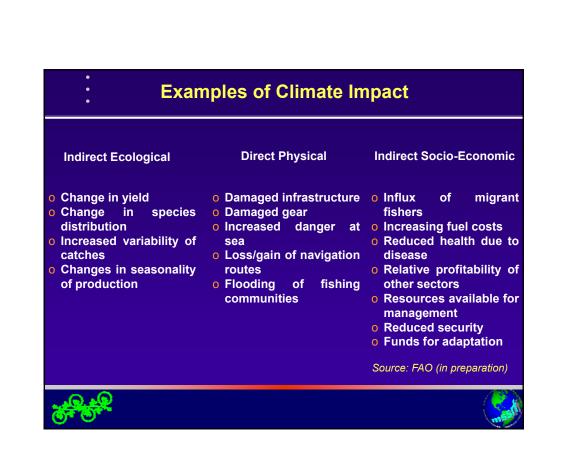


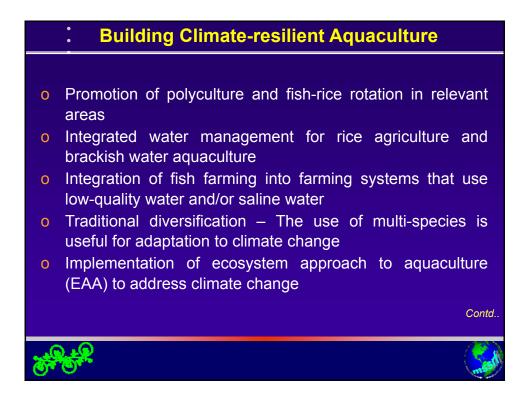

	I	Production			Average Annual Rate of growth		
	1990	2000	2008	1990-00	2000-08	1990-08	
China	6,482	21,522	32,736	12.7	5.4	9.4	
India	1,017	1,943	3,479	6.7	7.6	7.1	
Vietnam	160	499	2,462	12.0	22.1	16.4	
Indonesia	500	789	1,690	4.7	10.0	7.0	
Thailand	292	738	1,374	9.7	8.1	9.0	
Bangladesh	193	657	1,006	13.1	5.5	9.6	
Norway	151	491	844	12.6	7.0	10.0	
Chile	32	392	843	28.3	10.1	19.8	
Philippines	380	394	741	0.4	8.2	3.8	
Japan	804	763	732	-0.5	-0.5	-0.5	
Egypt	62	340	694	18.6	9.3	14.4	
Myanmar	7	99	675	30.2	27.1	28.8	
USA	315	456	500	3.8	1.2	2.6	
Republic of Korea	377	293	474	-2.5	6.2	1.3	

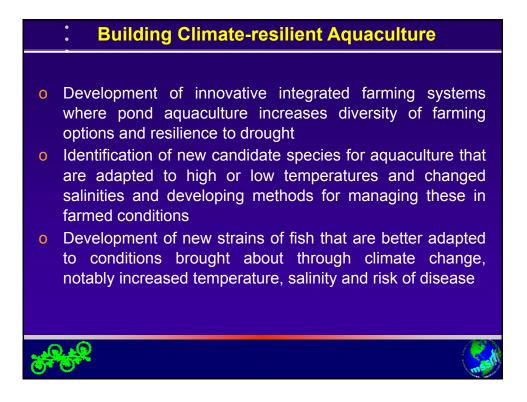
World Aquaculture Production by Environment

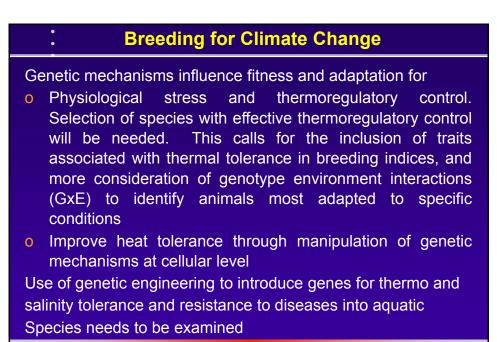
Environment	1990	1997	2000	2003	2008
Fresh water	7,620,418	16,136,892	18,471,971	22,039,411	31,486,051
Marine	4,151.007	9,626,991	11,833,004	14,142,479	16,990,899
Brackishwater	1,302,675	1,557,996	2,111,135	2,733,212	4,069,255
Total	13,074,100	27,321,879	32,416,110	38,915,102	52,546,205

 Fishery Production per Fisher or Fish Farmer in 2008 				
Continent	Production (Capture+ aquaculture	Number of fishers and fish farmers	Production per person	
	(Tonnes)	(No)	(Tonnes/year)	
Africa	8 183 302	4 186 606	2.0	
Asia	93 579 337	38 438 646	2.4	
Europe	15 304 996	640 676	23.9	
Latin America and the Caribbean	17 703 530	1 287 335	13.8	
North America	6 170 211	336 926	18.3	
Oceania	1 286 340	55 796	23.1	
Total	142 287 124	44 945 985	3.2	
State P		Source: I	FAO (in preparation)	

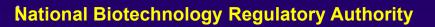


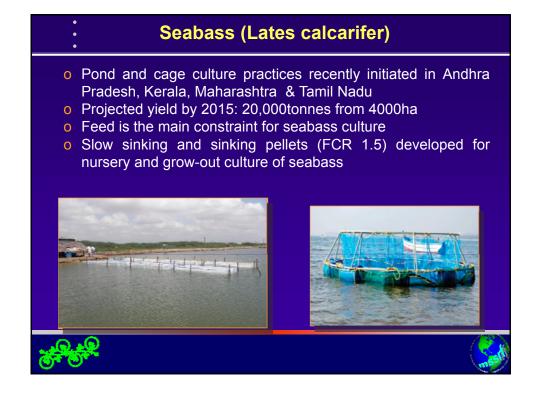

•	World Fish Price				
	Year	Price (US \$/ton)			
	2000	992			
	2005	1105			
	2006	1183			
			Source : FAO		
State P					




UN Climate Change Conference, 2009 Copenhagen Accord

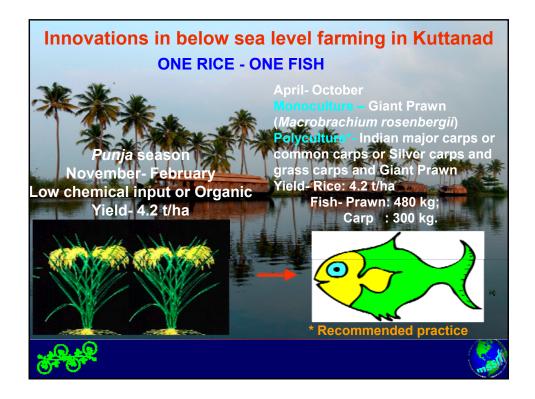
- Recognizes the scientific view that the increase in global temperature should be below 2 deg C and agree to take action to meet this objective with equity as basis
- Enhanced action and international cooperation on adaptation, especially in least developed countries, small island states and Africa
- Annex I Parties of Kyoto Protocol commit to implement individually or jointly the quantified economy wide emission targets for 2020, to be submitted to the Secretariat by 31 January 2010 for compilation. This will be measured, reported and verified
- Non-Annex I Parties to the Convention will implement mitigation actions, including those to be submitted to the Secretariat by 31 January 2010.

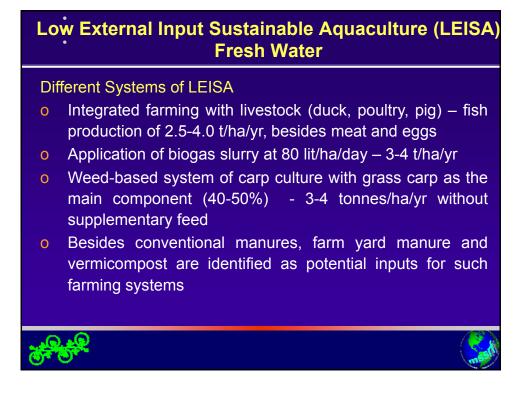




The bottom line of our national agricultural biotechnology policy should be the economic well being of farm families, food security of the nation, health security of the consumer, biosecurity of agriculture and health, protection of the environment and the security of national and international trade in farm commodities"

(M S Swaminathan Panel 2004)



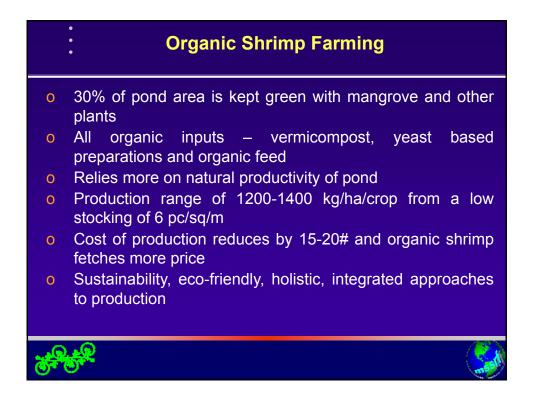


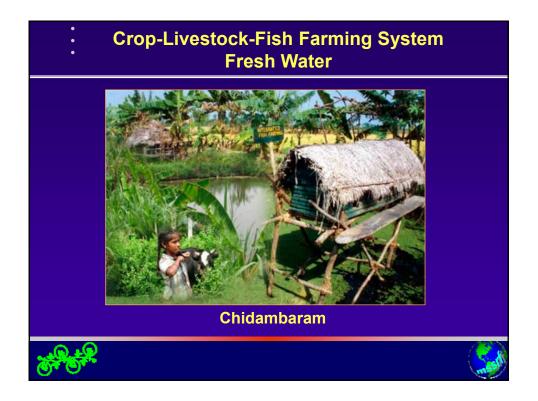
Aquaculture Self-help Groups in Kumarakom A Small Producer Management Revolution

Low External Input Sustainable Aquaculture (LEISA) Brackish Water

Improved Management – Traditional Farming

- Regulated tidal water exchange during culture
- Auto/selective stocking with disease free seeds
- Use of geolite, dolomite and LSP for better water quality
- Use of pellet feeds for regular feeding
- Routine sampling for monitoring the growth and survivability
- Applying some of the proven ITKs like use of neem extracts


Productivity

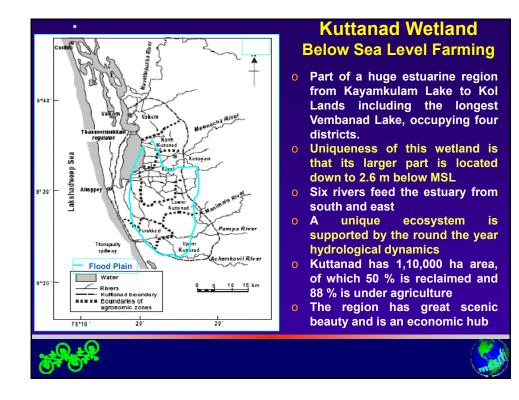

o Monoculture -0.7-1.2 tons/ha; polyculture - 0.8-1.5 tons/ha

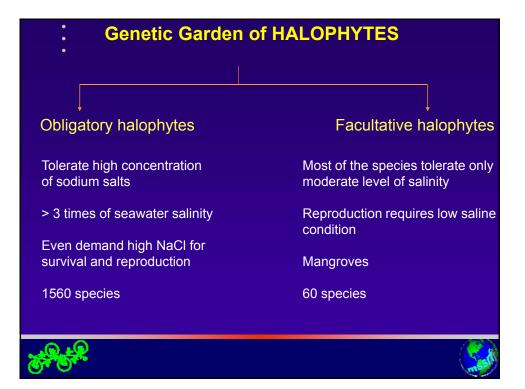

Future Strategy for Increasing Productivity

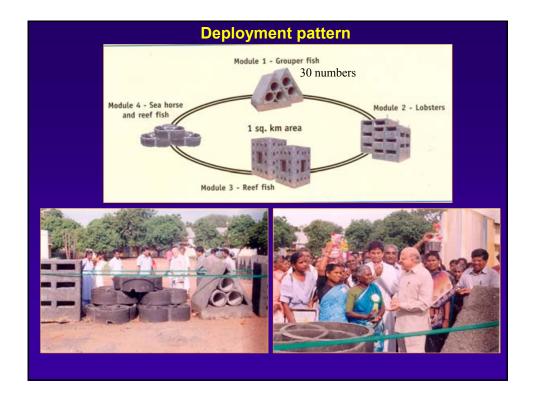
- Defining site specific interventions to increase productivity
- Developing biosecurity protocols
- Diversification of the species in culture systems
- o More research focus on polyculture with suitable species combination

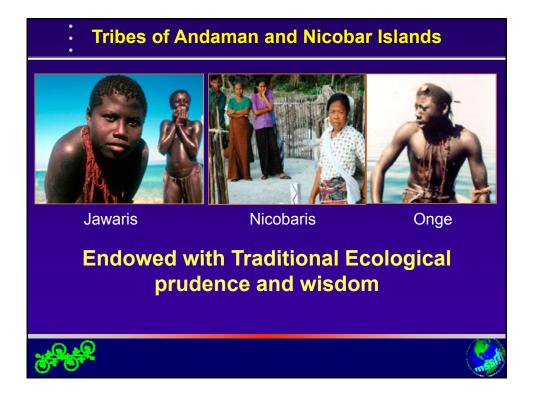
	US007622636B2		
·>	Unite Parida e	d States Patent	US 7,622,636 B2 (45) Date of Patent: Nov. 24, 2009
(54)	MARINA	IN GENE FROM <i>AVICENNIA</i> RESPONSIBLE FOR CONFE LERANCE IN PLANTS	RRING <i>C07H 21/00</i> (2006.01) (52) U.S. CL 800/295; 800/278; 800/306;
(75)	Inventors:	Ajay Parida, Chennai (IN); Pro Mehta Angela, Chennai (IN); C Venkatraman, Chennai (IN)	
(73)	Assignce:	M.S. Swaminathan Research Foundation, Chennai (IN)	The present invention relates to a method of producing salt stress tolerant plants by transforming the plants with an iso
(*)	Notice:	Subject to any disclaimer, the te patent is extended or adjusted U.S.C. 154(b) by 0 days.	lated nucleic acid sequences encoding a dehydrin (DHN protein. The invention further provides a transgenic plan
(21)	Appl. No.:	11/997,725	expressing the dehydrin gene of Avicennia marina. Using functional genomics, this gene was derived from large-scale
(22)	PCT Filed	Jul. 31, 2006	EST sequencing of the cDNA library of the salt toleran
(86)	PCT No.:	PCT/IN2006/000270	mangrove Avicennia marina.
	\$ 371 (c)(1). I, Published Mar. 31, 2004).*		

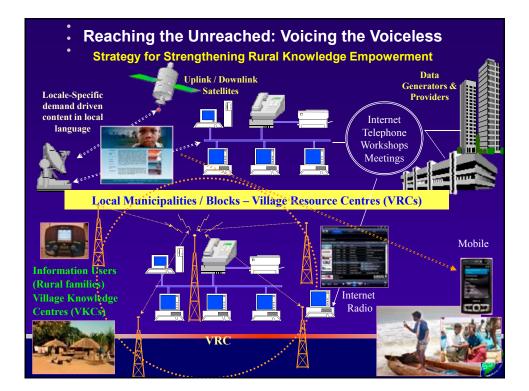
Sea Water : A Social Resource

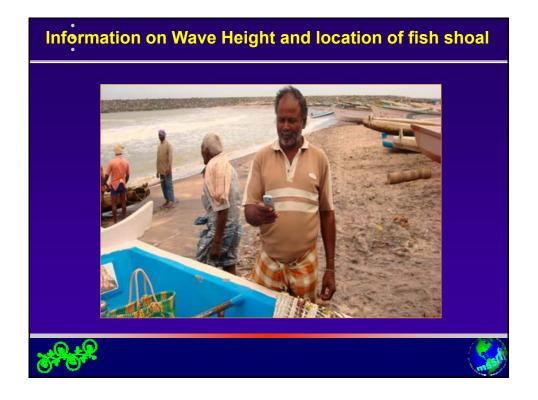

Dandi March(6 April 1930)


With nothing more than the salt of our sea, Gandhiji made colonial rule unacceptable in a non-violent manner that captured the imagination of the entire world. Gandhiji emphasised through this struggle that sea water is a public resource, which should be accessible to all.









Tsunami early warning system : modern science plus traditional knowledge			
o Tsunami warning	 Nicobaris : when sea recedes, turn back and run to higher grounds 		
 Ongees tribe of Little Andaman 	 <i>"giyangejebey"</i> in their dilect means solid earth becoming liquid (i.e.) tsunami 		
• Animal behaviour a few hours before the December 26, 2004 earthquake	 Swarms of crabs rushing out of burrows Elephants and dogs becoming restive 		
Strate Contraction			

